Report No. K-TRAN: KU-96-3
Final Report

TORSIONAL ANALYSISFOR
EXTERIOR GIRDERS

W. M. Kim Roddis
Mark Kriesten
Zhong Liu
Univergity of Kansas
L awrence, Kansas

April 1999

K-TRAN

A COOPERATIVE TRANSPORTATION RESEARCH PROGRAM BETWEEN:
KANSASDEPARTMENT OF TRANSPORTATION

THE KANSAS STATE UNIVERSITY

THE UNIVERSITY OF KANSAS



Torsional Analysis For Exterior Girders

Research Project Supported in Part by
Kansas Department of Transportation K-TRAN # KU-96-3

and by Mid America Transportation Center MATC/KU96-2

Final Report and

Design Aid

Principal Investigator: W. M. Kim Roddis Ph.D., PE
Research Assistant: Mark Kriesten

Research Associate: Zhong Liu, Ph.D.

Department of Civil and Environmental Engineering
The University of Kansas
Lawrence, Kansas 66045
April 1999



1. Report No. 2. Government Accession No. 3. Recipient Catalog No.
K-TRAN: KU-96-3

4 Titleand Subtitle 5 Report Date
TORSIONAL ANALY SIS FOR EXTERIOR GIRDERS April 1999
6 Performing Organization Code
7. Author(s) 8 Performing Organization Report
W. M. Kim Roddis, Mark Kriesten, and Zhong Liu No.
9 Performing Organization Name and Address 10 Work Unit No. (TRAIYS)
University of Kansas
Department of Civil and Environmental Engineering 11 Contract or Grant No.
Lawrence, Kansas 66045 C-909
12 Sponsoring Agency Name and Address 13 Typeof Report and Period
Kansas Department of Transportation Covered
Docking State Office Bldg. Final Report
Topeka, Kansas 66612 October 1995 to April 1999

14 Sponsoring Agency Code
106-RE-0087-01

15 Supplementary Notes
Additional funding was provided by the Mid-American Transportation Center.

16 Abstract
Concrete deck placement imposes eccentric loading on exterior steel bridge girders. This report describes a design tool that aids
bridge engineersin evaluating the response of the exterior girder due to this eccentric loading.

Computer analyses are conducted in order to gain a detailed understanding of the factors influencing the response of the girder. It
is shown that the “flexure analogy” is correct and can be used in the design tool. The “flexure analogy” is the assumption that
torsional loads on the girder are mainly carried by the flanges in minor axis bending. Top and bottom flanges need to be analyzed
independently since the boundary conditions for them vary significantly. Furthermore, analyses indicate that a substantial
improvement in accuracy can be achieved if the boundary conditions on the local system used to analyze the behavior of the
girder are changed. The influence of dynamic loads, such as the movement of the finisher and the impact of concrete during the
placement process, isinvestigated and found to be negligible.

Based on these findings, adesign tool in the form of a Visual Basic O application, TAEG (Torsional Analysis of Exterior
Girders), for Windows 95/NT O has been created. It uses the stiffness method to calculate the stresses and deflections of the
flanges due to torsional loads. Results for bracket forces and diaphragms are also calculated. TAEG can be used to evaluate the
effect of temporary support in the form of tie rods and blocking.

Three examples are provided to justify the results and are compared with existing methods or field data. TAEG uses a 3-span
fixed end continuous beam analysis model for finding torsional stresses while the AISC Designh Guide method uses a less
accurate single span fixed end model. Therefore, in comparison to the AISC Design Guide method stress results calculated with
ATEG are approximately 20% higher for the positive moment region and approximately 20% lower for the negative moment
region. Generally, stresses at the negative moment region govern.

17 Key Words 18 Distribution Statement
Concrete, Deflections, Diaphragms, Flange, Flexure No restrictions. This document is
Analogy, Girder, Stress, Torsion available to the public through the

National Technical Information Service,
Springfield, Virginia 22161

19 Security Classification 20 Security Classification 21 No. of pages 22 Price
(of thisreport) (of this page) 130
Unclassified Unclassified

Form DOT F 1700.7 (8-72) I \ktran\17K SU95.7doc




Abstract

Concrete deck placement imposes eccentric loading on exterior sted bridge
girders. Thisreport describes a design tool that aids bridge engineers in evaluating the
response of the exterior girder due to this eccentric loading.

Computer analyses are conducted in order to gain a detailed understanding of
the factors influencing the response of the girder. It is shown that the “flexure
analogy” is correct and can be used in the design tool. The “flexure analogy” is the
assumption that torsional loads on the girder are mainly carried by the flanges in minor
axis bending. Top and bottom flanges need to be analyzed independently since the
boundary conditions for them vary significantly. Furthermore, analyses indicate that a
substantial improvement in accuracy can be achieved if the boundary conditions on the
local system used to analyze the behavior of the girder are changed. The influence of
dynamic loads, such as the movement of the finisher and the impact of concrete during
the placement process, isinvestigated and found to be negligible.

Based on these findings, a design tool in the form of a Visua Basic ©
application, TAEG (Torsional Analysis of Exterior Girders), for Windows 95/NT ©
has been created. It uses the stiffness method to calculate the stresses and deflections
of the flanges due to torsional loads. Results for bracket forces and diaphragms are
also calculated. TAEG can be used to evaluate the effect of temporary support in the

form of tie rods and blocking.



Three examples are provided to justify the results and are compared with
existing methods or field data TAEG uses a 3-span fixed end continuous beam
analysis mode for finding torsional stresses while the American Institute of Stedl
Construction (AISC) Design Guide method uses a less accurate single span fixed end
model. Therefore, in comparison to the AISC Design Guide method stress results
calculated with TAEG are approximately 20% higher for the positive moment region
and approximately 20% lower for the negative moment region. Generally, stresses at

the negative moment region govern.
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1. Introduction

1.1 Problem statement

Problems that occur due to eccentric loading of exterior steel bridge girders
during concrete deck placement are the subject of the research project KTRAN KU-
96-3, (refer to appendix C). This project is being conducted at the University of
Kansas (KU) as a part of the Kansas Transportation Research and New Developments
(KTRAN) Program of the Kansas Department of Transportation (KDOT).

Exterior girders of KDOT sted girder bridges are loaded with an eccentric load
applied by cantilever overhang brackets. These brackets support the concrete
overhang and the screed rail for the concrete finishing machine as well as the walkway
for the worker. If deflection due to this loading is excessive it causes a thinner deck,
insufficient concrete cover, concrete leakage through formwork, and, in severe cases,
dip or even buckling of bent plate digphragms.

KDOT currently uses an in-house computer spreadsheet (TORSION.WK4),
[Jones and LaTorela, 1994] to predict the torsional response of the fascia girders.
This spreadsheet follows the AISC Design Guide “DESIGN FOR CONCRETE
DECK OVERHANG LOADS’ [AISC, 1990]. Due to the inherent ssimplifications of
the design guide and a lack of information about both the loads and the restraint, the

method is not as accurate as desired and may lead to possible over or under design.
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In order to achieve a better understanding of the problem and to develop a
design aid that leads to an easier and more accurate design, this research project has
been divided into the following three tasks:

1.) Gathering information on equipment types, construction loads, screed loading,
and temporary bracing schemes.

2.) Performing field tests to determine the girder torsional response to the concrete
and screed rail loads and to compare these results with an analytic moddl. The
results will be used in calibrating and verifying the design aid that is part of task
3.

3.) Developing a design aid based on the information gathered in achieving tasks 1
and 2. It will evaluate stresses and deflections due to torsional loading as well
as determine whether the proposed girder and bracing scheme are sufficient or
not. If the proposed bracing scheme proves inadequate, the design aid will
calculate the effects of revised temporary bracing as specified by the KDOT
engineers. Thisdesign aid will be the primary deliverable item from this project,
with an accompanying final project report.

Objective 3 isthe subject of the present investigation.

1.2 Background and Scope of the Design Aid

Both the AISC Design Guide [AISC, 1990] and the KDOT spreadsheet [Jones
and LaTorela, 1994] use an approach to torsion caled the flexure analogy. This

approach considers the flanges of the girder to act independently under torsion and
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treats them as single spans loaded laterally by a horizontal couple statically equivalent
to the torsion imposed by the overhang brackets. It is assumed that the spans are
totally fixed by the cross-frames or diaphragms of the bridge.* This assumption results
in higher stresses at the ends (at digphragms) and lower stresses at the center-span
(between digphragms) than for the case of continuous support conditions. The
resulting stresses in the flange tips are superimposed with the dead load stresses due to
noncomposite action. The rotation of the whole girder is derived geometrically from
the deflection of the two flanges. The investigation of the spreadsheet program [Jones
and LaTorella, 1994] revealed that a considerable error enters the calculations with the
accumulation of conservative values used by the AISC Design Guide. Throughout the
AISC Design Guide and the spreadsheet only the governing values for loads,
moments, and other parameters are carried forward for further computations,
accumulating to an error of about 10 to 15% [Zhao and Roddis, 1996]. Examples of
such conservative assumptions that accumulate in sequence are 1) the usage of
maximum values of lateral moment in deriving equivalent uniform loads, and 2)
selecting the worst case value of 0.53 for distributed loads and 0.60 for screed loads

for the ratio of fixed end to midspan moment (M+) max.

! The KDOT Design Manual [KDOT 97] page 5-43 uses a different approach for estimating
the angle of rotation. Since the beam fixity at the diaphragms is somewhere between a fixed and a
pinned condition, the angle of rotation is computed for both end conditions and then the results are

averaged.
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In development for the AISC Design Guide method, the maximum latera
moments at the cross frames, (Ms,) max, due to the finishing machine are calculated
for two different machines, but only the larger values for the heavier Bidwell 3600
Series machine are used. To quote from the AISC Design Guide [AISC, 1990], page
9, ”...the maximum moments (My,) do not vary widely with the machine type.... The
governing values of (My,) max for the 3600 Series machine were then used to derive
equivaent uniform loads....”

The maximum lateral flange moments between cross frames, (M+) max, due to
the distributed overhang loads are smply derived from (My,) max by the multiplication
of 0.53. Quote from [AISC, 1990], page 7, “A conservative value of 0.53 was
selected for thisratio ((M+) max to (Ms,) max)”. A value of 0.60 was selected for the
moments due to the finishing machine. Thus to compute the torsional moments and
stresses, the KDOT Design Manual page 5-40 uses full fixed end moments at the
diaphragms and center-span moments between diaphragms of 0.53 x (DL+LL)FEM
and 0.6 x (Screed Load) FEM, where FEM indicates Fixed End Moment.

Furthermore, the research done by Zhao and Roddis [1996] provides evidence
that the flexure analogy is highly accurate and represents a feasible aternative in
determining normal stresses at the flange tips. It aso suggests that substantia
improvement can be achieved by adjusting the boundary conditions of the considered
simple span modd from fixed end to continuous or spring supported. This

improvement may be as high as 35% [Zhao and Roddis, 1996].
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In addition to the main goal of achieving more accurate stress and deflection
results for the exterior girders, KDOT expressed the need for consideration of issues
related to secondary members, dynamic loads, temporary supports, and bracket forces
in the design aid. For the secondary member bent-plate diaphragms and cross frames
it is necessary to determine: 1) whether the secondary members are adequate to resist
the loading by the exterior girder, and 2) for bolted connections whether dip will
occur. Significance of dynamic loads generated by the finishing machine and the
placement process should be evaluated. Moment reduction due to temporary
transverse supports such as tie-rod at top flange and timber blocking near bottom
flange must aso be included. Finally, the determination of the internal bracket forces

would facilitate the work of the engineer and can beincluded easily in the design aid.

1.3 Overview

To investigate torsional girder response various analyses are done both by Zhao
and Roddis [Zhao and Roddis, 1996] and are included within this document.
Computer analyses in this document are used to clarify 1) the support the diaphragms
provide for the bottom flange (Section 2.1.2.1), and 2) the required number of spans
for a continuous beam mode (Section 2.1.2.2). Hand analyses are used to resolve 1)
the influence of dynamic loads due to the movement of the motor carriage (Section

2.2.1), and 2) the impact of concrete during the placement process (Section 2.2.2).
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Dynamic effects were found to be insgnificant. Given the findings of these
investigations and the results of the field testing, a static system and boundary
conditions for the design aid program use are selected. The following basic
assumptions can be justified with the conducted research and are carried over to the
design aid program.
The flexure analogy is accurate for the purpose of the analysis.
Three continuous spans with fixed ends are sufficient to achieve good
improvement over the AISC design aid assumptions.
The amount of support for the bottom flange depends on the type of lateral
support (cross frames vs. diaphragms) used and needs to be considered.
Dynamic loads due to the movement of the motor carriage are negligible.
Loads due to the impact of concrete during the placing process are negligible.
The program “Torsional Analysis for Exterior Girders — TAEG” unites the above
findings in a Windows 95 ©/ Windows NT 4.0 © application. Divided into input
and output sections, TAEG provides a structured step by step procedure to help
design overhang dimensions and cross frame spacing as well as to check proposed
falseawork schemes, giving the engineer information on stresses, deflections, and
diaphragm response. It also checks for dip in the case of bolted connections

between girder and diaphragms and calculates internal overhang bracket forces.
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Changed boundary conditions” used by TAEG give greater accuracy compared to
the methods used before. With its ssimple to use interface and help option, the
program TAEG is a valuable tool in the design of this type of common highway

bridge.

2 TAEG uses a 3-span analytic model with fixed ends and pinned intermediate supports in
contrast to the AISC Design Guide 1 span fixed end model.
® Bridges that are multi-girder, medium span, simple or continuous, composite or

noncomposite, steel rolled beam or plate girder.
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2. Analytic Investigation of Torsional Responses of Exterior Girders

2.1 Analytic Investigation of Girder Boundary Conditions

2.1.1 Previous Finite Element Analysis

The research conducted by Zhao and Roddis as part of the overal research
project consisted of a parametric study of the torsional response of the exterior girder
using Finite Element Method and structural analysis using stick-frame modeling. The
analyses were conducted on an artificial set of bridge girders with parameters varied
over assumed ranges and actual KDOT bridges. Parameters included girder depth,
bridge width, bridge skew, and temporary support schemes. Results were compared
to those obtained with the AISC Design Guide.

In the final report [Zhao and Roddis, 1996] of the investigation by Zhao and
Roddis the following main conclusions are drawn, which influence the design ad
devel opment:

1. Theflanges of the I-shaped girder carry the lateral load independently.
The flexure analogy is valid for the described conditions.

2. The effects of temporary supports are considerable and need to be
included. The effect of the temporary transverse supports depends on

the stiffness they provide.
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3. The assumption used by the AISC Design Guide of torsionaly fixed
boundary conditions at the cross-frames is inaccurate. The error may
be as high as 35%.

Conclusion number three and the fact that the analysis was done on a mode
where bottom and top flanges are equally restrained by the diaphragms, sets the stage
for amore detailed analysis of the actual boundary conditions the diaphragms provide.

Although the report [Zhao and Roddis, 1996] concludes that bridge skew
increases torsiona loading, this occurs due to the finishing machine traversing the
bridge perpendicular to the girders and diaphragms. This is typical for bridges with

skews of 20% or less. Skew is not considered for the design aid.

2.1.2 Analytic Research Within this Investigation

2.1.2.1 ANSY S® Anaysisof Boundary Conditions

In order to answer the question whether the diaphragms provide equal support
for top and bottom flange, a Finite Element analysis has been conducted. This analysis
compares a 3-span model with fully restrained end-supports and a stiffener/diaphragm
support at the intermediate supports (stiffener model) with the same model only
atered at the diaphragm supports in a way that the web is laterally fixed (no-stiffener
model). The stiffener model considers a diaphragm that is only two-thirds of the depth
of the girder and is connected towards the top of the girder. Refer to Appendix A for

more detailed information on the boundary conditions and the modeling assumptions.
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The girder dimensions are chosen within usual KDOT practice [Zhao and
Roddis, 1996]. The largest section used for this analysis with a girder depth of 2130
mm (84 in.) isidentical to section number 6 in table 1 of Zhao and Roddis, [1996].

Only two runs with a height of 1130 mm (45 in.) and 2130 mm (84 in.) each are
conducted for the no-stiffener model since, as confirmed by later observations, no
influence of the girder height on this mode is expected due to equal support for both
flanges as described in Appendix A. In order to get a better picture of the behavior of
the stiffener mode, five runs with heights of 1130 mm (45in.), 1530 mm (61 in.), 1730
mm (69 in.), 1930 mm (77 in.), 2130 mm (84 in.) are performed.

Using the nodal solutions generated by ANSYS® the deflections, support
reactions, and flange moments are determined and analyzed with a spreadsheet
program. These results are obtained for various significant locations along the girder

axis, for the bottom as well as the top flange (see Appendix A).

The results for the top flange of the two models are always within a negligible
margin of each other. The bottom flange exhibits a considerable difference in
moments and deflection.  With the maximum moment deviation of 33% and the
deflections at the center of the middle span increasing by a factor of 2.8 comparing the
no-stiffener modd with the stiffener model, it becomes necessary to include these
effects for a thorough analysis. Although one would most likely see X-frame

assemblies for the deeper girders tested, thus providing equal support to top and
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bottom flange, it is deemed necessary to include a procedure that incorporates the
actual support conditions.

Good agreement of the ANSY SO top flange results with a simple beam moded is
found. This gives confidence in the chosen model and type of analysis. It also again

confirms the validity of the flexure analogy.

2.1.2.2 Required Model Size

As already mentioned in Section 1.2, a substantial improvement to the accuracy
of the analysis can be achieved by adjusting the support conditions for the flexure
analogy modedl to continuous or spring support versus the fixed-end conditions used in
the AISC Design Guide [AISC, 1990]. In order to apply the flexure analogy more
accurately, it is necessary to determine how many spans a continuous beam approach
should include.

Three different models (1-span, 3-span, and 5-span) are analyzed to determine
the number of spans needed to accurately simulate continuous boundary conditions.*
The actual boundary conditions at the diaphragms are considered continuous over a
larger number of spans. With the intention of getting as close as possible to this state
without an excessive problem size the three models are compared for certain load and

deflection values at their center spans (refer to Appendix B).

* The design aid assumes diaphragms are placed in line across the full bridge width. Thisis

the same assumption asis used by the AISC Design Guide and the KDOT Bridge Manual.
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Two load cases with a distributed and a concentrated load are analyzed. These
load cases resemble the actual loading conditions that are mainly the distributed load
of the concrete and the concentrated load of the finishing machine. Influence lines for
various parameters of interest at the center span are analyzed (Figures B.2 through
B.13).

Those influence lines for the center-span moment (M,), support moments (Mg,
Mc), center-span deflection (W,), and support reactions (B, C) exhibit one similar
trend for both load cases. Differences between the 1-span and the 3-span model are
pronounced and considered important for this analysis. Differences between the 3-
gpan and the 5-span are smaller by about an order of magnitude and are considered
negligible for this analysis. This shows that a substantial gain in accuracy is made by
changing from a 1- to a 3-span model, while very little would be gained by changing
from a 3- to a 5-span model. Therefore, a 3-span modd which is fully fixed at the end
supports and pin-supported at the intermediate diaphragm supports is selected for the
design aid. This mode is shown in Figure D.1 with the intermediate diaphragm

supports labeled as support A and support B.

2.2 Data Collection

2.2.1 Dynamic Loads due to the Movement of the Motor-carriage

As the motor carriage of the finishing machine moves across the truss of the
machine, it stops at certain locations to allow the rollers and vibrators to smooth and

compact the concrete. These stops and the following accelerations are more or less
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abrupt and apply lateral dynamic forces to the supports of the finishing machine. The
magnitude of these forces is not available from the machine manufacturers [Bidwell,
1997]. However, from observation during deck placement, dynamic loads from motor
carriage movement would not be expected to be greater in order of magnitude than
concrete impact loads. As determined in the next section, it can be clearly calculated
that concrete impact loads are negligible. Thus, dynamic loads due to motor carriage

movement are also neglected.

2.2.2 Concrete Impact Loads.

Concrete that is freely discharged onto the forms during the placement process
exerts an additional load on the entire system of formwork and bracing. While most
authors of formwork related literature acknowledge the effects of concrete impact
loads, such as Richardson [1977], Waddell and Dobrowolski [1993], Peurifoy and
Oberlender [1995], ACI Committee 347 [1995], et al., no source of detailed analysis
of the phenomenon is given nor are any rule-of-thumb methods suggested.

Generally, the loads due to the impact of concrete on the forms are considered
small compared to the main dead and live loads and are neglected. The British CERA
Report No.1 [Kinnear et al., 1965] neglects the loads in question and is therefore cited
in Richardson [1977]. The author states later in chapter 6: “This final smplification
ignores the relatively small increase in pressure resulting from concrete being

discharged fredly from a height into the form.” It can safely be concluded that
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concrete impact loads are negligible. A rough estimate can be conducted in order to
give a quantified understanding of the loads in question as follows.

The general approach is to find the beam deflection due to the concrete impact
and then derive the equivalent static load that creates the same deflection. If this static
load is small compared to the rest of the construction loads, it can be neglected.

In order to find the deflection due to the concrete impact, a linear momentum
approach is chosen. The system is a simple span that is hit by a concrete particle in its
center. The size of the particle is equivalent to the amount of concrete that can be
placed within one natural period of the beam. Two cases have been investigated. One
with a light beam (no concrete placed) and one with a heavy beam (all concrete in
place).

Using the conservation of the momentum, mass times speed of the concrete
before the impact has to be equal to the mass times speed of the concrete and the
considered beam section after impact. Furthermore, the kinetic energy of concrete
plus beam is transferred into potential energy while the spring stiffness of the beam
dows down the system. This gives the necessary equations to calculate the resulting
deflection. The equivalent static forceis easily attained from the spring stiffness of the
beam and the calculated deflection.

Numerous assumptions enter this calculation, all of which can be found on the
conservative side.  Numbers for beam parameters have been taken from Synder
Bridge, values for concrete flow rate and drop height are taken from “Concrete

Pumping and Spraying” [T.H. Cooke, 1990]. Even if a dynamic impact factor of two
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is considered, the resulting load is far smaller than the remaining construction loads
and is therefore negligible.

In any event, limiting the height of the fall should decrease impact. To avoid
segregation, deck concrete should usually not be discharged from heights greater than

4-6 feet, as noted in most construction specifications.
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3. Approach Selected Based on Research Results

The preceding sections established that the flexure analogy with a 3-span model
of the girder flanges can be used to accurately analyze the torsiona behavior of the
exterior girders. The analysis on the boundary conditions at the diaphragms further
suggests that a differentiation between the upper and the lower flange has to be made
regarding their support. This differentiation and the need for the implementation of
temporary tie rods and timber blocking can be realized best in treating these supports
as static springs.

The requirements of this problem are well matched with the stiffness method.
Therefore, the design-aid analysis is based on the stiffness method implementing the
permanent and temporary lateral supports as springs where necessary. The analyzed
model extends over three equal-length lateral spans with fully fixed end supports and
pinned intermediate supports. These intermediate supports are springs for the bottom
flange in the presence of diaphragms and lateral-rigid in the case of cross-frames. This
is implemented with an option-button arrangement in the Visual Basic application.
The spring stiffness of the temporary supports is based on the assumption that the tie
rods and timber blocking are fixed at the middle of the bridge® This concept was

aready mentioned in Zhao and Roddis [1996], page 13, “because the whed loads

® The design aid assumes tie rods and blocking are placed in line across the full bridge width.

This is the same assumption used by the AISC Design Guide and the KDOT Bridge Manual.
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were almost symmetrical about the centerline of the bridge, the tie rods are assumed to
be fixed at the center between the two exterior girders.”

Values for stresses and deflection (rotation) of the exterior girder due to the
torsional load are derived from the results for the center-span of the analyzed 3-span
model. These results are superimposed with the major axis stresses and deflections
due to the noncomposite dead load required as program input.

Because the location of the overhang brackets is not known at an early stage of
the project when the analysis is performed and the fact that their exact placement is
not of great influence to the final result,® loads are not converted into bracket forces.
Dead loads of the concrete and forms and live loads on the deck and the walkway are
treated as distributed loads. Loads due to the finishing machine are concentrated loads
at the location of the wheels. No dynamic or impact loads need to be included in the
design aid since it has been shown that loads due to the impact of concrete during the
placing process are negligible (Section 2.2.2) and dynamic loads due to the movement

of the motor carriage are negligible (Section 2.2.1).

® [Zhao and Roddis, 1996], page 7, “Each unit load represented a lateral flange force due to
Pd1 (Concrete D.L.), Pd2 (Form weight), Pw (Wakway L.L.), and Ph (hydrostatic force from wet
concrete) applied at a cantilever bracket. (...) The moments did not vary widely with the location of

the unit loads.”
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4. Design Aid “Torsional Analysisfor Exterior Girders’ — TAEG

4.1 Scope of Program

The computer program “Torsional Analysis for Exterior Girders’ — TAEG — is
designed for two uses: first, as a quick tool during the design phase of a bridge
project to check overhang and diaphragm/cross-frame dimensions and spacing;’
second, to be used by KDOT to check falsework schemes submitted by the contractor.
TEAG is a Windows 95/NT© application that combines the familiar user-interface of
Windows © with a custom made problem solution for the overhang problems
encountered by KDOT.

A typical program run requires three basic steps: Input, Calculation, and Output.
The input portion of the program consists of forms on 1) dimensions of girder, 2) the
overall bridge and lateral support, 3) brackets, 4) loads, 5) connection girder -
diaphragm, 6) falsework, and an additional form for general project information such
as project number and description. All input information can be saved in a project file
(*.prj) for later use. The calculation portion of the program is run by button selection.
Following this, the output is displayed on forms divided into 1) stresses in the girder,
2) deflections of the flanges and the bracket, 3) loads of the brackets, and 4)

diaphragm reactions. A fifth form summarizes all input and output information and can

" The AASHTO LRFD bridge specification does not set a 25-foot maximum diaphragm

spacing.
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be saved to afile or printed. All forms can also be printed independently as they appear
on the screen. Calculations can be done in SI metric or U.S. Customary units, with
units matching the form labels, or even without predetermined units, in which case the
input has to be sdlf-consistent in units.

The program calculates stresses due to torsional load for the positive and
negative moment region for both top and bottom flanges. Torsionally induced stresses
are added to the stresses due to noncomposite dead load and then compared to the
yield stress. Lateral deflections of the flanges and the resulting rotation of the girder
are given. The deflection of the screed rail is given also. Bracket forces are calculated
in order to facilitate the task of approving falsework schemesin later stages of a bridge
project. Diaphragm reactions include the support reactions of the flanges at the lateral
supports, the resulting moment, and stress in the diaphragm due to this moment. If a
bolted connection between girder and diaphragm is used, bolt load and critical bolt
load are given based on AASHTO Table 10.32.3C. The program also determines

whether dlip in the connection occurs or not.

4.2 TAEG Usars Manual

4.2.1 Instdlation

TAEG comes with its own setup program, which places all necessary filesin the
computer’s system directory and registers them as needed. To install TAEG execute

“Setup.exe’ and follow the instructions on the screen. Help is provided in al the
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forms of the program as described in Section 4.2.5. These files may be viewed by

pressing the functional key, ‘F1,” or in some forms selecting the help button.

4.2.2 General useof TAEG

The application opens a main window where al actions are monitored and
invoked. All actions are started using the pull down menu on the top of the window.
The toolbar below provides additional user-friendliness without adding functionality.

Input information for a particular analysis is stored in project files (*.prj). The
pull down menu “File’ offers functions to open, save, print, and close existing and new
project files. It also brings a window on the screen that holds general project and file
information of the currently opened project file. The main window’s caption displays
the file name of the currently opened project file.

Creation of a new project file begins with the choice of units from the menu
“Units.” TAEG offers three choices. SI metric units (kN, mm), U.S. Customary units
(kips, in.), and unit independent calculation. Wheresas, the first two choices provide
the user with labels for the units to be used for every input, the third choice requires
the user to enter consistent input that is self-consistent in terms of units. Notice that
choosing different units will aways reset a project and delete all input and output

information. Internally TAEG uses metric units, namely kN and mm.
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Input information is entered in six different input windows (Section 4.2.3) that
are accessed from the “Input” menu. Note that closing the windows with the window
button in the top right corner of the window will unload the window and thus erase all
entered information. The windows should always be closed with the “Close” button
on the window.

After al necessary information for the analysis has been entered, the user should
save it to the project file using the pull down menu or the toolbar. After saving the
project-input file, the calculations are ready to be run. Thisisinitiated from the menu
“Calculate” or, again, from the toolbar. The results can be viewed using the “Output”
menu to invoke five output windows (Section 4.2.4). The “Help” menu (Section

4.2.5) gives access to the help system.

4.2.3 Entering Data

Project Information. (Location: Main menu - File — Project. See Figure 4.1)

General information of the project that the analysis belongs to can be entered in
the project information form. Text fields are provided for project number and title,
name of the engineer running the TAEG program, and space for notes. Thisform also
keeps track of the units used, the date of the last modification, and the creation data of
the project file. These last three items cannot be altered by the user and are generated

by the program. The date of creation reflects the time the project file was last assigned
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a new name, whereas the date of last modification presents the time the file was last

saved.

Girder Data. (Location: Main menu — Input — Girder. See Figures 4.2 a— 4.2.b)

This form contains geometric and material properties of the exterior girder.
Fields are provided for top flange width and thickness, web height and thickness,
bottom flange width and thickness, steel modulus, and yield stress. The help displays a
simple cross section of a typical girder and shows the dimensions mentioned. Rolled
or plate girders may be used. Since the torsional response is about the same for rolled
and plate girders, the program does not distinguish between them. Use the distance
between the bottom of the top flange and the top of the bottom flange as the web

height.

Bridge and Lateral Support Data (Location: Main menu — Input — Bridge. See
Figures4.3a— 4.3.c)

The form is divided into two areas. The first area contains information on the
overall bridge consisting of distance between lateral supports (diaphragm spacing) and
distance between the two exterior girders. The width of the bridge is used to
determine the spring stiffness of possible temporary tie-rods or timbers as mentioned in

Appendix D.
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The second area defines the type and properties of the lateral support. A choice
between cross frames and diaphragms is offered with a set of option buttons. If
diaphragms are used, information on the diaphragm properties has to be entered. This
information includes the diaphragm height, moment of inertia, yield stress, modulus of
elagticity, top offset, and web stiffener dimensions of width and thickness. The top
offset denotes the distance from the top of the exterior girder to the top of the
diaphragm and is used in the determination of the spring stiffness of the web stiffeners.
The width and thickness of the web stiffener that connects the exterior girder with the

diaphragm are aso used in the calculation of the spring stiffness of the stiffener.

Bracket Data (Location: Main menu — Input — Bracket. See Figures 4.4.a —
4.4.b)

Detailed information has to be given on the bracket dimensions. This includes
the walkway width, bracket spacing, bracket weight, and al major bracket measures.
The bracket weight and the bracket dimensions are used to calculate the bracket forces

and the lateral forces to be carried by the exterior girder flanges.

Load Data (Location: Main menu — Input — Loads. See Figures 4.5a— 4.5¢ and
4.4b)

The load data form is divided into sections covering 1) live loads, 2) dead loads,
3) noncomposite dead loads, and 4) finishing machine loads. The loads of the

overhang consist of the live loads of the walkway and the slab, and the dead loads of
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the formwork and the concrete (Figure 4.4 b). Stresses due to noncomposite dead
loads are optional and can be entered for the positive and negative moment region, top
and bottom flange respectively. They are added to the torsionally induced stresses in
the output window for stress and compared against yield as is done in the AISC
Design Guide. Advanced load options can be specified in a separate window that can
be activated with the “Advanced” button. These options are only used if the check
button, “Use advanced options,” is checked. Advanced load options specify where the
positive and negative moment region is located in relation to the diaphragms / cross
frames. This defines how the torsionally induced stresses are superimposed with the
stresses due to noncomposite dead loads. If the advanced options are not used, the
program adds the maximum torsional stress (whether occurring at the diaphragm or
between diaphragms) to the stresses due to noncomposite dead loads.

The maximum single whed load of the finishing machine and whed spacing are
required input parameters. Assuming four wheels, the user has to specify three
distances between them to provide the length over which the loads are spread (Figure
4.5 c). In case of more than four wheels, the user should condense the loads of the
wheels to four loads and use the wheel spacing of the four inner wheels of the machine

as input making a conservative assumption.

Connection Girder — Diaphragm Data (Location: Man menu — Input —

Connection. See Figures4.6.a— 4.6 b)
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A choice of a welded and a bolted connection is offered for the girder —
diaphragm connection. The option of a bolted connection is only available if the use
of diaphragms is specified in the bridge information window. If a bolted connection is
used, the user has to specify the number of bolts, the bolt placement, the bolt diameter,
bolt material, bolt hole size, and dlip category according to AASHTO Table 10.32.3C.
Bolt material is limited to A325 and A490 stedl. The choices of hole sizes are standard

and oversize/short dots.

Temporary Support Data (Location: Main menu — Input — Temp. Support. See
Figures4.7.a— 4.7 b)

Two kinds of temporary support can be applied: tie rods for the top flange, and
timber blocking for the bottom flange. The number of supports between diaphragms
can be entered for both flanges individually with a maximum of three tie rods and three
timbers. The spacing of the temporary support can be entered in the text boxes
provided below, which are enabled after the number of supports has been chosen. The
user should pay close attention to the fact that these distances need to add up to the
distance between lateral support as specified in the bridge information window. The
distances specified here are used to locate the springs representing the supports in the
system. The cross sectional area of both tie rod and timber has to be specified as well.
The program uses 200 GPa for the elastic modulus of steel and 12 GPa for the elastic

modulus of wood when calculating the equivalent spring stiffness of the supports.



The project is ready for calculation after all the above information has been

entered.

4.2.4 Viewing Results

Sress Results (Location: Main menu — Output — Stresses. See Figures 4.8 a —
4.8.b)

The stress results are given for the negative moment region and the positive
moment region separately.

Torsionally induced stresses vary linearly across the top and bottom flange,
changing from positive to negative sign (minor axis bending). Stresses due to
noncomposite dead load are nearly constant within the top and bottom flanges (major
axis bending). To find the governing maximum values, the stresses from minor and
major axis bending are superimposed. See Figure 4.8b for a graphical display of the
stress distribution due to the torsional load and noncomposite dead load.

In case the advanced load options are not used, the torsionally induced stress
given are the maximum of either the stress at the diaphragm or between diaphragms.
In case the advanced options are used, the stresses given are as specified in the
advanced load form. Not using the advanced options is aways on the safe side,
whereas using them gives a better picture of the stress distribution at the cost of the
need to enter more detailed information. Specifying the advanced load options will

superimpose the stresses correctly according to their location along the girder. This
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can yidd a substantia improvement because the stresses between diaphragms are
usually around 50 — 60 % of the stresses at the diaphragm.

The text boxes for the sum of stresses will turn red if overall stresses exceed
yield stressin order to give adirect visual check when optimizing a project.

Note that the maximum stresses due to torsion for the top and bottom flange
may not correspond to the same wheel load location in accordance with the analysis
approach described in appendix D. However, they represent the maximum values as

the wheel load moves along the girder and are independent of each other.

Ultimate Stress Check (Location: Main menu — Output — Ultimate Stress. See
Figures 4.9)

A check of ultimate stresses in the top flange is conducted and the results are
presented in this form. The result is the value of the interaction equation (10-155),
[AASHTO, 1996], which has to be smaller than 1. Calculations and assumptions

follow the example in the KDOT Bridge Design manual on page 5-35, [KDOT, 1997].

Deflection Results (Location: Main menu — Output - Deflection. See Figures
4.10)

The dtiffness method used to analyze both flanges calculates horizontal
deflections of the flanges. They are presented on the deflection results form. The
rotation of the girder, measured in degrees, and the vertical deflection of the bracket at

the screed rail are derived geometrically assuming rigid body motion of the bracket.
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The calculations assume that the rotation of the girder is small and therefore the
horizontal deflection at screed rail is negligible. A sketch of the deflectionsis included
for easy understanding.

Note that the top and bottom flange deflection pertain to the same whedl load

location. The results are reported for the largest screed rail deflection.

Bracket Results (Location: Main menu — Output — Bracket Forces. See Figure
4.11)

Internal forces of the brackets are given in the bracket results window. The
bottom portion presents the loads one bracket has to carry. All loads are calculated
assuming smple spans between brackets. Loads entered in the load form in units of
force per unit area are multiplied by the bracket spacing and given in units of force per
unit length. The maximum wheel load that acts on a bracket may be due to more than
one or even two wheels and therefore can exceed the whedl load entered in the load
form. Note that this load is not equivalent to the wheel load used to derive the
stresses and deflections.

The top portion of the form displays a schematic view of the bracket with the

forces in each member.

Diaphragm Results (Location: Main menu — Output - Diaphragm. See Figure

4.12)
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Results for the diaphragm that supplies the lateral support for the exterior girder
include the reaction force couple due to torsion that is applied to the diaphragms by
the flanges of the girder, the resulting moment, and the stresses due to this moment.

If bolts are used to connect the diaphragm to the girder, the critical load per bolt
according to AASHTO Table 10.32.3C and the actual load of the bolts are given and
compared to make a statement as to whether dlip in the connection occurs.

A sketch islocated on the form for easy understanding of the calculated values.

Summary of Results (Location: Main menu — Output - Summary.)

All results and input information are summarized on afina form. The main text
box starts with all the information gathered from the user, then lists all results that
have been calculated. The text within the text box can be saved to a file in either text
(.txt) or rich text (.rtf) format. It is recommended to save in rich text format since this
preserves the formatting better than the plain text format. All information can aso be
printed directly from the form using the print option if the printer is set to standard

format (TAEG cannot use the print option if the printer is set to postscript format).

4.2.5 Obtaining Help

Help is provided according to Microsoft Help documents that can be viewed
within TAEG by using the functional key F1 or other Help options. Help for

individual forms can directly be obtained. This brings up the associated help file in a
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Separate browser window. Help can aso be obtained from the main menu by choosing
Help. This displays the index of available help topics and provides links to the

individual subjects.

4.3 Assumptions and Requirements

4.3.1 System Requirements

TAEG is a Visua Basc © application designed for Windows 95 © and
Windows NT 4.0 ©. The basic requirements to run these operating systems will be
sufficient to run TAEG. The layout of the program has been designed for a screen
resolution of 1024 by 768 pixes, but smaller or larger resolutions may aso be used.

Other restrictions and requirements are not known.

4.3.2 Assumptionswithin TAEG

4.3.2.1 System

To analyze the torsional response of the exterior girder certain assumptions are
made. The main assumption is the use of the flexure analogy as discussed in chapter 3.
Another very important assumption is the choice of the loading and beam model and
the boundary conditions as described in Appendix D. The program uses three spans,
each the length of the diaphragm spacing, as a continuous beam with the ends fixed

and intermediate pinned supports to analyze the torsional loading of the flanges. Refer
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to Figure D.1 for details. Loads on this beam are the eccentric loads on the overhang

converted to aforce couple applied at top and bottom flange.

4.3.2.2 Loads

The loads along the beam are divided into three sections. Section 1 includes all
overhang loads (dead load and live load) and concrete that has been placed, section 2
includes all these loads plus the whedl 1oads of the finisher, and section 3 includes only
the overhang loads (dead load and live load) minus the concrete dead load. Thisisto
simulate the placement process as the finisher moves along the bridge. The location of
load section 2 is varied within the second span to find the position where it generates
the maximum stresses and deflection of the flanges. The individual results for stress,
flange deflection, and digphragm response are maximized independently. This means
that the results may relate to different wheel load locations on the beam.

In more detail, this means:

Torsionally induced stresses for top and bottom flange at the positive and
negative moment region may relate to different wheel load locations (See
Figure D.1).

Hange deflections for top and bottom flange are due to one single whed
load location, but this location may differ from the one for the stresses or

support reactions.
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Support reactions from top and bottom flange at the diaphragm pertain to
the same whee load location, but this location may differ from the one for
the stresses or flange deflections.

All loads are treated as distributed loads including the whed loads of the
finisher. Thisisin disagreement with the actual conditions where the loads are applied
concentrated to the flanges by the brackets. The assumption isjustified with a number
of insights. Firgt, although bracket spacing is assumed, the actual location and spacing
of the brackets are not known or may vary from plansin the field. Second, it is much
more complex to analyze the beam with discrete bracket locations and to optimize the
location of the wheel load and the brackets than to use a “smeared” load that simulates
the discrete bracket forces. Third, the error that enters the calculations is small and on
the conservative side. Figure 4.12 compares two identical systems differing only in the
load type they carry. One with four concentrated loads in the center (system 1),
gpaced like the finisher whedls in example 1, and one with the same load distributed
over the total width of the before mentioned wheels (system 2). The maximum
moment in midspan for system 1 is 82 kNm (kilo-newton meter) and for system 2 is 88
kKNm. This represents a 5.3 % difference and indicates that this smplification is

justifiable.

4.3.2.3 Lateral Support

The kind and amount of lateral support that is provided to the flanges is

specified in the input section. For the top flange, pinned rigid lateral supports are used
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for both cross frames and diaphragms. For the bottom flange, pinned rigid latera
supports are used for cross frames while for diaphragms these supports are replaced
with springs as described in Appendix D.?

Temporary support can be specified for both flanges. Tie rods and timber
blocking is assumed to continue across the whole bridge. They are treated as springs
that support the flanges laterally. Spring stiffness is derived as described in Appendix
D where half the width of the bridge is used to determine the effective spring stiffness.
This follows the notion that most torsional loads on the exterior girders are
symmetrical over the center of the bridge. A result of this is that the tie rods and
timbers do not move over the center of the bridge and therefore only one-half of the
length of them is effective.

In case of one-sided bracket, e.g. for bridge extensions or phased construction,
the engineer should consider the effect of the length of the tie rods and timbers. Half
of the value that is entered for the bridge width in the bridge data from is used to
determine the spring stiffness of the temporary supports. The assumption of
symmetric loading and of no movement of the tie-rodstimber over the centerline of
the bridge is no longer valid for one-sided brackets. One-sided brackets will weaken
the effect of temporary support. Double the length of the actual temporary support

should be used for the bridge width in order to account for this.

8 The spring stiffness only accounts for the stiffener below the diaphragm as shown in Fig.

D.2. Therotational stiffness of the diaphragm loaded in its major axisis not considered.
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One-sided brackets also have other effects. In the case eccentric loads of the
overhang on one side of the bridge are not equaled out by the eccentric loads of the
other side of the bridge, the system receives a total torsional load that has to be carried
by the overall structure.

Another issue might be the bracing of the girder top flange. It is necessary to
provide adequate bracing to prevent lateral torsional buckling. Detailed information
on the lateral bracing can be found in “Fundamentals of Beam Bracing” [Yura, 1993].

Both the total torsional loading of the system and the lateral bracing of the
girder are beyond the scope of this research project and are not considered in this

report or TAEG.

4.3.2.4 Bolt Sip

Table 10.32.3C of the AASHTO Bridge Specifications, [AASHTO, 1996] is
used calculating the critical bolt load in the connection between girder and
diaphragms. The actual load of the bolt is calculated assuming that all bolts carry the
same load regardless of their distance to the center of the bolt pattern. Thisis because
the connection is considered dip critical and therefore an elastic theory can not be used
since this would require dip to occur. Details on this approach can be explored in
Salmon & Johnson [Salmon, Johnson, 1996]. An analytical example can be seen in

Appendix G.
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4.3.2.5 Deflection

The rotation of the girder is derived from the top and bottom flange deflection.
A lateral movement of the shear center of the girder is neglected, which would occur
in case of unequal deflection of the flanges. The vertical deflection of the screed rail is

directly derived from the rotation, assuming rigid body motion of the bracket.

4.3.2.6 Bridge Skew

Bridge skew is not considered in the design aid as discussed in Section 2.1.1.

4.4 Examplesand Verification

4.4.1 Example 1. Sample Calculation in the Kansas Department of Transportation

Design Manua

General: The KDOT Design Manual, [KDOT Bridge Office, 1997], section la
(Pages 5-35 to 5-46) features an example calculation for the response of an exterior
girder under torsional loads. Information from this example is used to run an analysis
with TAEG and to compare the two approaches. Appendix E summarizes the input
information and the results using the summary windows listing. Input information has
been taken directly from the design manual where possible and derived from the given
values where direct transferal was not possible. This refers mainly to the loads that are

given as total loads per bracket in the design manual and need to be entered in TAEG



as loads per unit area of deck surface. Refer to the footnotesin Appendix E for details

on conversion of loads.

Results: Refer to Table 1 for a comparison of results.

Not all results computed by TAEG can be compared to the results gained by the
KDOT Design Manual. The results available are restricted to the stresses in top and
bottom flange for positive and negative moment regions, and the rotation and top
flange deflection of the girder. These results exhibit generally good agreement
between the two approaches.

To compare the stresses calculated by TAEG to those calculated using the
KDOT design manual, we first divide the results of the KDOT design manual by the
load factor 1.3 which is not considered by TAEG. The difference between them then
is that for both top and bottom flanges, in the positive moment region, the stresses
found by TEAG will be about 20% more than those found by the KDOT design
manual. In the negative moment region, the stresses found by TEAG will be about
20% less than those found by the KDOT design manual. The main reason for the
differences in stresses, and therefore in moments, is certainly found in the changed
boundary conditions as described in Section 2.1.2.2. Figure B.4 displays the decrease
in negative moment calculated using a 3-gpan versus a 1-span anaytic modd. Figure
B.5 displays the increase in positive moment calculated using a 3-span versus a 1-span

analytic modd.
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The top flange lateral deflection is lower in TAEG than in the KDOT manual.
Whereas, the KDOT manual derives the top flange deflection from the rotation of the
girder using a standard torsion deflection formula, TAEG derives these deflections
directly from the stiffness method. The results are nevertheless in good agreement.
The rotations are in close proximity of each other, 0.25 for TEAG and 0.17 to 0.46

(with an average of 0.315) for KDOT design manual.

4.4.2 Example 2. Swartz Road Bridge

General: Example 2 is an analysis of the bridge extension of Swartz Road. This
bridge’ s performance has been measured as part of the field testing included in this
research project. Stresses for the field-testing are derived from the strain
measurements taken during the testing. Temporary support at Swartz Road was
provided only in the form of one 4" by 4" timber in the center of the first span of the
3-span bridge. Analyses for the bridge with and without this timber are run with
TAEG and compared with the stress information gathered during field-testing.

Appendix F gives detailed information on the parameters used and results.

Results: Close agreement between the stress results generated by TAEG and
the field measurements could not be found. Whereas, the measured stresses do not
exceed approximately 640 ps for positive and negative moments (top and bottom
flanges), the stresses calculated by TAEG depend strongly on the location and type of

temporary support used.

46



If no temporary support is used, the maximum results for top and bottom
flanges are approximately identical around 6233 ps (located on the top
flange).
If the timber is used, results for the top flange are amost not effected,
whereas the stresses in the bottom flange are decreased significantly to 893
ps (decrease by 86%) for the positive moment and 3015 psi (decrease by
51%) for the negative moment.
Refer to Table 2 for a comparison of the obtained results. A copy of the KDOT
spreadsheet with this example's data is enclosed with the program installation
under “Example2.xIs’ for comparison. Stress results compare as predicted by
the research. Stresses at the negative moment region predicted with the
spreadsheet are 7600 ps (divided by factor 1.3 is 5846 psi), not considering any
temporary support. Stresses calculated by TAEG are 5989 psi for the bottom

flange and 6233 ps for the top flange without any tie rods and timbers.

Inter pretation:

1. Top Flange: Stress results for the top flange calculated by TAEG are off by a
great amount. There are two possible reasons that have to be considered. First, the
load conditions may differ from the assumed 10 psf (pounds per square foot) live load
on the walkway and dlab. Second and more important, the lateral support provided by
the formwork may have a substantial impact on the loading of the top flange, leading

to much lower stresses than predicted by TAEG.
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2. Bottom Fange: The use of timber blocking as temporary support for the
bottom flange strongly influences the stress results calculated by TAEG. Considering
the timber in midspan brings the stress results closer to those measured in the field, but
they are still off by a significant amount. See Table 2 for details. These differences can
only be explained with the uncertainties regarding the load and lateral support not

accounted for.

4.4.3 Example 3. K10 Bridge

General: Several test runs with different temporary support schemes were
performed. Unfortunately, bad weather invalidated strain gauge readings at the girder
and thus prevented stress data for the torsional loading to be calculated. Deflections
that have been measured with prisms are the only data that can be compared with
results calculated by TAEG. The temporary support scheme for pass 1 of the tests
performed is used to make a comparison with TAEG. Refer to “Fidd-Testing Of K-
10 Bridge Over 1-70”, [North, Roddis, 1996] for details on the performed tests. Two

tie-rods and timbers are placed between cross frames.

Results: Maximum deflection for the top flange for pass 1 is recorded as about
0.1 in. TAEG calculates the same value as 0.05 in. The bottom flange deflection was
measured as 0.12 in. and must be compared to the value of 0.011 in. calculated by

TAEG. This difference between measured and calculated deflection for the bottom
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flange may be due to the fact that the timbers were not wedged tight so that measured
bottom flange deflection should be compared to the unblocked case. Using TAEG to
find bottom flange deflection with no blocking and two tie-rods gives a top flange
deflection of 0.58 in. and a bottom flange deflection of 0.178 in. The bottom flange
deflection for this case compares only fairly with the one measured in the field. This
indicates that the amount of lateral support provided by the timbers is of importance
and the uncertainty about timber blocking in this example is the cause of differentia
results.

A copy of the KDOT spreadsheet with this exampl€e's data is enclosed with the
program installation under “Example3.xIs’ for comparison. The spreadsheet predicts
19.4 ksi (divided by 1.3 is 14.923) stress at the negative moment region where TAEG
yields 13.454 ks stress, both without temporary support. Thisis in good agreement

with the conducted research.
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5. Conclusions

Research: The conducted research shows that an increase in accuracy of up to
35% over the AISC Design Guide can be achieved by using a 3-span continuous beam
instead of a single span fixed end beam to analyze the torsional behavior of the girder.
The use of a 5- span beam will yield no further enhancement over the 3-span modd.
Furthermore, the research indicates that the flexure analogy is correct and can be used
for further computations. The need to handle top and bottom flanges independently
became apparent. Dynamic loads due to the movement of the motor carriage or the

impact of the concrete during placing are found to be negligible.

Design aid: A design aid based on these findings is established in the form of
the Visual Basic © program TAEG (Torsional Analysis of Exterior Girders). Using
the 3-span continuous beam system and the stiffness method, the program calculates
results for:

1) Stressesin the flanges for significant locations,

2) Ultimate stress check for the top flange,

3) Deflections of the flanges,

4) Rotation of the girder and deflection at the screed rail,

5) Internal forces of the overhang brackets,

6) Support reactions and stresses in the diaphragm,
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7) Bolt load and critical bolt load of the connection between girder and
diaphragm, and
8) Top flange buckling check for the interaction of a compressive force in the

top flange and lateral moment due to torsional loads.

Functionality: The program can be used during the design phase of a project or
to easily review falsework schemes submitted by contractors.

Parameters that influence the performance of the exterior girder can be changed
and easily evaluated during the design phase without extensive calculations. Proposed
falsework schemes are evaluated and improved in a more effective and accurate way
using the program. With TAEG, it is now possible to include and easily evauate
temporary support. This function was not available in the KDOT spreadsheet and the
AISC Design Guide only gives moment reduction factors for top flange tie-rods,
neglecting timber blocking. The program will greatly facilitate and accelerate the

work of the engineers at KDOT.

Results: TAEG uses a 3-span fixed end continuous beam analysis mode for
finding torsional stresses while the AISC Design Guide method uses a less accurate
single span fixed end moddl. Therefore, in comparison to the AISC Design Guide
method stress results calculated with TAEG are approximately 20% higher for the

positive moment region and approximately 20% lower for the negative moment region
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(compare Figure B.4 and B.5). Generally, stresses at the negative moment region
govern.

Deflections are in good agreement with both the previous approach and data
obtained from field tests.

Examples are run to compare the program with the previous approach and data
collected in field-tests. Differences between the program results and the approach
based on the AISC Design Guide can be explained with the changes made to the static
system used to analyze the girder. Data obtained in field tests is in poor agreement
with results calculated by TAEG. Thisis due to uncertainties in load conditions and to

unaccounted lateral support provided by falsework, etc.

General: The research project yields a design tool that gives more accurate
results on the behavior of exterior girders due to torsional loads. The program can be
used to design and check falsework and digphragm dimensions for standard composite
highway bridges. It brings new functionality in form of the temporary support
evaluation.

The increase in accuracy will save cost by eliminating problems due to excessive
deflection of the exterior girder that could lead to, in severe cases, the need for a

costly deck overlay of the bridge.
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Appendix A - Analysis of Boundary conditions

When sdlecting boundary conditions, the question arises as to whether the
diaphragms provide equa support to the top and the bottom flange of the exterior
girder for torsion. This appendix investigates two sets of boundary conditions for a
typical bridge girder and compares the resulting girder response.

A portion of a typical exterior girder section, consisting of three equal lateral
spans between diaphragms, is modeled using ANSY'S 5.30 finite eement software.
The girder is analyzed with two different sets of support conditions at the intermediate
supports. The first set (no-stiffener model) includes 3-dimensiona fixed nodes at the
web next to top and bottom flange and represents the case of equal support for both
flanges. The second set (stiffener model) incorporates a stiffener with nodes fixed at
the top flange and two-thirds down from the top flange along the web. This is to
approximate the actual support offered by a diaphragm. Refer to Figure A.1, A.2, and
A.3 for model geometry and support conditions.

The following describes the modding assumptions, geometry, boundary
conditions, and loads used as well as the results.

Modeling assumptions: The 3-D modé is composed of volumes glued together
and meshed with the SOLID 45 element. This element has been shown to capture the
effects of shear stresses typical for torsional loading (Appendix —I, [Zhao and Roddis,
1996]). SOLID 45 has eight nodes with trandation degrees of freedom in x, vy, z

directions but no rotational freedom. The mesh is created with user predetermined
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element sizes in order to gain equal levels of error for both models and to control the
problem size since only a limited version of ANSYS 5.3© is available. The stiffeners
in the second model are also modeled as volumes. This gives the two models dightly
different meshes. The material properties are set to E=200 kN/mm? ("29000 ksi),
u =0.3, G=81 kN/mm? ("11700 ks).

Geometry: Three spans of equal length of 7.32 m ("24 ft.) make up the girder
with the total length of L=21.96 m (72 ft.). The girder section is chosen from section
6 of Renjun Zhao's investigation (see Table 1, [Zhao and Roddis, 1996]). Both
flanges are 35 x 413 mm (1.4 x 16 in.) with a web that is 13 mm (0.5 in.) thick. The
height of the girder varies from 1130 mm (45 in.) to 2130 mm (84 in.), where the later
coincides with the actual height of section 6. In the stiffener moddl, one stiffener with
the thickness of 10 mm and the height of the web is placed on one side of the girder at
both third points. These stiffeners are fully attached to the girder (see Figure A.2,
Stiffener moddl).

Boundary conditions. At the end sections (X=0, X=L) all nodes are completely
restrained in all three degrees of freedom in both models. The difference in the two
models lies in the support at the third points where the diaphragms frame into the
girder. The no-stiffener model is created by fixing the web at the flanges in all three
directions (see Figure A.2), thus providing equal support for top and bottom flange.

The nodes in the stiffener model are fixed at the stiffener at the top flange and two-



thirds down from the top, thus providing support for the bottom flange only via the
stiffener (see Figure A.2).

Loads. A torsional load is applied in the form of two lateral pressure loads on
the outside face of the flanges. Thetop flange receives aload on its right face directed
in the positive z orientation. A load directed in negative z orientation is applied to the
left face of the bottom flange (Figure A.1). The two loads of p=0.0002 kN/mm? are
continuous over the full length of the girder and generate a torsional moment of 14.70
kNem/m for the 2130 mm high girder and 7.7 kNem/m for the 1130 mm high girder.
These loads are found to be within the range of loads for actual girders of these sizes.
Furthermore, they guarantee that the resulting stresses and strains stay within the
elastic region and that the material law is vaid. The actual configuration and
magnitude of the load is not of further interest since this study only compares the
results between different boundary conditions and does not focus on the numerical

outcome of the results.

Summary of FE-model data:
ANSY S5.30, 3-D analysis with Salid 45, 8-node brick element,
E=200 kN/mn?, u =0.3, G=81 kN/mm?
Three span I-section, L=21.96 m, Flanges: 35 x 400 mm, Web 13 mm x h mm, h
varying between 1130 and 2130 mm.

No-stiffener model: all nodes restrained at end sections, web fixed at the third points
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Stiffener model: al nodes restrained at end sections, stiffener at third points fixed at
top flange and two-thirds down from top.
Lateral load of 0.0002 kN/mm? in opposite directions at top and bottom flange outer

faces.

Results:

Only two runs with girder heights of 1130 mm (45 in.) and 2130 mm (84 in.) are
performed for the no-stiffener model after it became apparent that little or no change
of the results occurs with the variation of the girder height for this model. This can be
expected due to the boundary and load conditions and considering the before
mentioned flexure analogy. The stiffener model is investigated with girder height
between 1130 mm (45 in.) and 2130 mm (84 in.) using 200-mm increments.

Analysis focuses on the flange moments over the y-axis in both top and bottom
flanges at the end-section (X=0), the center of the outside span (X=L/6), the third
points (diaphragm support, X=L/3), and the center of the middle span (X=L/2). The
maximum deflection of the flanges in the outside and middle span and the support
reactions at the third points are also investigated in detail (Refer to Figure A.1).

The flange moments are computed using the nodal stress solution compiled by
ANSYSO. A spreadsheet program is used to convert these nodal results into
moments. The deflections and reactions are also derived from the nodal solution.

Flange moments. Figure A.3 shows the distribution of the bottom flange

moments for the different girder heights over the X-axis. As the support at the third
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point softens due to the increasing girder height and distance to the fixed node on the
stiffener, the following observations can be made:

(@) The fixed-end moment at X=0 decreases from -30 to -37.5 kKNem.

(b) The support moment at X=L/3 increases by 3.5 kNem raising the center-span
moment at X=L/2 by approximately the same magnitude.

(c) The center-span moment for the outer span at X=L/6 decreases by 1.3 kNem
where the effect of the decreasing fixed-end moment overpowers the effect of
the increasing support moment.

(d) The enclosed graph (w/o stiffener 113) for the no-stiffener mode exhibits
amost identical fixed-end and support moments as well as identical span
moments. Furthermore, it is always the lower or higher limit for the values

respectively.

All these observations comply with the known stiffness-load distribution
relationship. Using the no-stiffener results as a basis, the difference between the no-
stiffener model and the modd with stiffener is as high as 32.2% for the midspan
moment and 12.5 % for the support moment at the third point.

The top flange moments, shown in Figure A.4, are aimost indifferent to the
variation of the girder height. No or little difference is observed between the no-
stiffener model and the stiffener model. This is due to the fact that the support
conditions for the top flange are identical for both models. This is aso another

indication that the top flange is not influenced by the bottom flange and that the
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flexure analogy is correct. The existing differences of up to 3.3% are within the
solutions margin of error and can be neglected.

Deflections:  The bottom flange deflections in Figure A.5 increase with
increasing girder height. This phenomenon is driven by the decreasing stiffness of the
third point support. With the maximum increase of deflection at X=L/2 at over 280%
(again, using the no-stiffener mode as the basis), this effect is the most pronounced
within the investigated parameters.

The top flange deflections vary only within 1% and verify that the gained
understanding of the model is correct. This understanding leads to the reasoning that,
within this model, the response of the top flange is indifferent to the girder height.
Furthermore, the outer span deflection is about 2% smaller than the center span
deflection due to the fully fixed end section at X=0, and the boundary conditions for
the top flange in the no-stiffener model are equal to those in the stiffener model.

Support reactions. Support reactions at the third points do not exhibit changes
greater than the solution variation of the FE analysis over the girder height. The
difference between the no-stiffener model and the stiffener mode reactions is due to
the changed location of the support nodes. The ratio between the distance from top to
bottom support is about two-thirds and so is the ratio between the support reactions.
The differences between the top and bottom support of the stiffener mode of about 2
kN is at around 2% and is negligible.

Comparison to beam results for top flange: In order to assess the ANSY S©

results and their accuracy in relation to the flexure analogy, a 3-span beam modd for
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the top flange has been analyzed with the software package RISA 2-D©. The system
for the analysis was the before mentioned 3-span with fixed moment conditions at the
end sections and pin-support at the third points (see Figure A.8). The section of the
flange was subjected to 0.007 kN/mm, the equivalent of the ANSY S© analysis load of
0.0002 kN/mm?. Span length and material properties were equal to the parameters
used with ANSY S©.

The results of this analysis are displayed in figure A.4 and figure A.6 for
moments and displacement respectively. Comparing the results for the no-stiffener
model with those obtained by RISA 2-D®©, it becomes obvious that good agreement
between those two has been found. The differences for the deflections are less than
0.1% and for the moments always less than 5.5%. This confirms the flexure analogy

once more and gives confidence for the pursued analysis with ANSY S©.
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Appendix B — Determination of the Required Modd Size

The decision to abandon the currently used 1-span mode with fixed ends in
favor of a continuous beam analysis leads to the question of how comprehensive the
new multiple span mode should be. The choice of the number of spans is based on
increasing accuracy while keeping the problem size small. The following analysis is
carried out to select the appropriate number of spans.

System:  Three models with 1, 3, and 5 spans are analyzed with RISA 2-D ©
[RISA 2-D, 1993] in order to obtain results for the center span of the respective
models. Refer to Figure B.1 for information on section location, system, and support
conditions. The midspan moment (M) and deflection (W-), the support moment for
the left (Mg) and right (M¢) side of the center span, and the support reactions left and
right of the center span (B, C) are the parameters of interest. The models are fully
fixed at their ends and all bearings between have are chosen to pin supports.

The cross section is a rectangle 413 by 35 mm (16 by 1.4 in.) with an dastic
modulus of 200 kN/mm? (29,000 ksi). The span length L is 10 000 mm (32.8 ft.).

Loads: The systems are subjected to two different load cases. Thefirst caseisa
distributed load, g, extending from X=0 to the coordinate a. The second is a single
load, P, located at a. Influence lines for the result parameters are obtained by varying
the coordinate a, in increments of L/5, from X=0 to X=3L (Figure B.1). Both loads

are set to unit values of 1 KN/m and 1 kN respectively. The results are entered into a
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spreadsheet program for visuaization and anaysis and are shown in Figure B.2
through Figure B.13.

Results:  Multispan beam response values for selected load conditions are
tabulated in widely available structural analysis textbooks such as Schneider (1996).
Results from the RISA 2-D © [RISA 2-D, 1993] model were compared to tabulated
values for selected loading to verify the accuracy of the conducted analysis. Exact
match was found.

Figures B.2 —B.12 show that in genera the 3 and 5-span graphs differ by 5.0%
or less for the center span of interest, while the 1-span model exhibits considerable
differences of up to an order of magnitude from the 3-span model. The percentile
difference, shown in the data table of each figure, uses the model with the smaller
number of spans as a basis. Note that the percentage difference may be mideading
where the curves cross the x-axis. For values close to zero, the percentage difference
may be a high value suggesting a large difference although the values are actualy in
close proximity close to the x-axis.

It is important to notice that the values for the reaction B, due to the distributed
load q for the 1-span (Figure B.2), are not really comparable to those for the other
gpans. Thisis due to the fact that the values for the 3 and 5-span represent the shear
forces from the right and the left side of the support. The 1-span values represent
right side shear forces only. Results for reaction C can be compared since the load is

only on the left side.
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The results show that for both load cases a considerable difference between 1
and 3-span exists, but that the difference between 3 and 5-span models are smaller by
about an order of magnitude. It shows that no substantial improvement for the future
analysis in the design aid is gained by using a 5-span over a 3-gpan modd since only
small change occurred between the 3 and 5-span models. Even smaller change would

be expected between a5 and 7-span model.
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Appendix C — Problem Description

. Project Title

Torsion of Exterior Girders of a Steel Girder Bridge During Concrete Deck

Placement.

. Principal Investigator

W. M. Kim Roddis, Associate Professor, Civil Engineering, University of

Kansas.

1. Research Objectives

Deflection of the exterior girders due to torsional loading caused by the screed
and concrete load during deck placement lowers the screed rail and screed, thereby
producing a thinner deck and insufficient concrete cover to the top of the reinforcing
steel. KDOT currently uses an in-house computer program to predict the torsiona
response of fascia girders to concrete placement loads, however this method is not as
accurate as is desired due to a lack of information about both the loads and the
restraint. Design information is not available on the loads applied by the screeds
commonly used on KDOT bridges, resulting in major uncertainty with respect to
magnitude and location of applied loads. Structural information on degree of torsional
restraint provided by fascia girder abutment and pier supports, cross frames, and bent
plate diaphragms are also known only very approximately. These two sources of
uncertainty result in possible major variation between current design assumptions and
actual conditions, leading to uncertainty in design and possible unintended over or

under design.

The objectives of this project are to:
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Document the typical screed being used by contractors, clarifying the load side
of the equation with respect to magnitude, location, and range.

Determine the torsiona restraint and structural response, analyzing the
behavioral response of the fascia girder to concrete placement loads.

Establish the proper transverse support system relative to girder sizes, girder
gpacing, span lengths and deck thickness and overhang, providing improved

fascia girder torsional design.

V. Workplan Summary

Objective 1 will be accomplished by surveying contractors to determine
equipment types, gathering contractor and manufacturer information on screed

loading, and performing testing to measure screed loads in the field.

Objective 2 requires the acquisition of field data on severa KDOT bridges
during construction to measure torsional response to concrete placement loads. Since
the torsional response of fascia girders is of interest to KDOT for both rolled beams
and plate-girder bridges, the proposed testing program will involve a minimum of three
bridges: one rolled beam and two plate-girders. All test bridges are to be selected by
KDOT depending on construction schedule and should be representative of typical
KDOT design. The results of the field testing will be used to verify and calibrate an
analysis program written to determine the fascia girder's torsional response to
concrete placement loads. The program development will begin prior to the field-
testing. Use can be made of rotational stiffness data aready collected by KDOT on
one structure (1-470 west of Topeka), for preliminary program testing.



Objective 3 will take the analytic program and extend it to perform the design
function of calculating the proper size, spacing, and connection details for transverse
attachments to the fascia girder. This design program will be the primary deliverable
item from this project, with an accompanying final project report. The report will
include recommendations on when and how to use provided design aids. The report
will be ddlivered to KDOT unbound and camera ready. Reproduction will be done by
KDOT. Twenty (20) copies of the bound report will be provided to the investigator
by KDOT. User needs will be taken into account so that the fina program will
dovetail with the design needs of the KDOT Bridge Design Department.
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Appendix D — Stiffness Method used in TAEG

The following shows the principal use of the stiffness method within the design
aid TAEG. Theanalytic background of the procedures used in TAEG is described and
discussed to give a general understanding of the program and the ability to judge the
results adequate. This appendix contains information on the static system used in
TEAG, the derivation of spring constants of tie-rods, timber blocking, and the
diaphragm stiffener. It aso explains some special aspects of the use of the stiffness
method, the methods used to solve the equation system, and how the results are
determined.

Using the stiffness method, the following equation system has to be solved

K*V=P K = Stiffness matrix
V = Vector of Deformations
P = Vector of Loads

for the system shown in Figure D.1.

System: Figure D.1 shows the 3-span system with all the applied loads and the
boundary conditions as it is used within the design aid TAEG. This system is used to
investigate the top flange as well as the bottom flange. In the case of the bottom
flange, diaphragm springs are substituted for the supports A and B. These springs
represent the stiffness of the web stiffener that connects the diaphragm to the girder as
mentioned in section 3. Figure D.1 shows also springs between the supports. These

springs represent a case with one tie-rod/timber between lateral supports.
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The distributed loads shown are divided into 3 sections. They are chosen to
simulate the load distribution during the placing process. The center section includes
al loads, which are formwork DL, wakway LL, slab LL, concrete DL and wheel
loads. The loads on the left side consist of the al above loads but the wheel loads.
The loads on the right are the before mentioned minus the wheel load and concrete
DL.

In order to find the position of the whedl loads that generate the maximum
stresses and deflections they are moved along the beam between support A and B.
Results include the maximum stresses of either support A and B, stresses at the center
span, deflection at around the center span and support reaction at support A and B.

Derivation of the spring stiffness C;, C,, Cs

- G, spring stiffness of thetie rods attached to the top flange.

_E"A
T
with E: = Modulus of dasticity of sted (200 GPa)
I, = half the distance between exterior girders
A = Cross-section of thetierod
- Cu, Spring stiffness of the timber blocking at the bottom flange.
c =Bt A,
Ib

with E. = Modulus of elasticity of wood (12 GPa)
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I, = half the distance between exterior girders
Ay, = Cross-section of the timber
The length, |y, is chosen as half the distance between the two exterior girders.
The assumption that the tie-rods and timbers do not move over the centerline of the
bridge implies that the loads applied on the system are mostly symmetrical. This seems
reasonable since only the weight of the motor carriage is unsymmetrical depending on
its location.
- Cs, spring stiffness of the stiffeners at the digphragms
A smplified modd that represents the conditions at the girder — digphragm
connection can be used to determine the spring stiffness of the diaphragm tiffener.
Refer to Figure D.2 for detailed information on this system and the assumptions made.
Using the integral:
D=0[(M1 Mg) / (EI)] dx
the deflection of thetip of the stiffener due to a unit force can be found as:
D=13/(3El) In units of length per force.
Conversion to the force necessary to deflect the tip one unit length will yield:

]

C, E In units of force per length.

Solving the equation system:  Since the system is a one-dimensional beam with
no longitudina loads, the axial deformation elements of the stiffness matrix are
neglected. The individua eement stiffness matrices are of the dimension 4 X 4. The

one-dimensionality of the system also means that the stiffness matrix, K, is a

68



symmetrical matrix with a maximum bandwidth of seven and a maximum dimension of
two times n, where n represents the number of nodes of the system. The nature of the
stiffness matrix holds also that no zero elements are placed on the diagonal, which
makes it possible to use a simple Gauss-Jordan elimination without pivoting.

Results: The results gathered from the procedure include stresses at the positive
and negative moment region, deflection inside the center span, and support reaction at
the supports A and B. Results are given for top and bottom flanges. They are
maximized by moving the whedl load section from support A to support B in
increments of 1/10 of the diaphragm spacing. The other loads, namely the loads of the
sections left and right of the whedl load, are extended or shortened accordingly. Refer
to Figure D.1 for load position and maximization scheme. Stress results at the
negative moment region are the maximum of either support A or B. The resulting
maximum stresses for top and bottom flanges do not necessarily belong to the same
whedl load position as opposed to the deflection and support reaction (diaphragm
load) results where top and bottom flange results aways belong to the same whedl
load position. The deflection of the overhang at the finishing machine rail is
geometrically derived from the two lateral flange deflections assuming rigid body

motion of the bracket.
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Appendix E — Example 1 Data Summary

TEAG - Torsional Analysis for Girders Version 1.0 - Summary Report for
EXAMPLEL.prj

T INPOT DATA T

PROJECT AND FILE INFORMATION

Input file name ‘EXAMPLEL.prj

Location :C:\teag\EXAMPLEL.prj

KDOT Project # :KANSAS DEPARTMENT OF TRANSPORTATION
DESIGN MANUAL

Engineer :MARK KRIESTEN

Project Title ‘EXAMPLE 1

Last Modified 1714199 12:12:16 AM

Created :6/24/99 2:32:23 PM

System of Units Sl

Notes :

GIRDER DIMENSIONS AND MATERIAL PROPERTIES

Top Flange (Width X Thickness) :300 X 25 [mm]
Bottom FHange (Width X Thickness) :400 X 40 [mm)]

Web (Width X Height) :1300 X 10 [mm]
Yield Stress :250 [MPa)
Modulus of Elasticity :200000 [MPa)

BRIDGE AND LATERAL SUPPORT DATA

Distance between lateral Supports :6300 [mm]

Bridge Skew :0 [Degrees
Bridge Width 113400 [mm]
Diaphragms ‘NO
Diaphragm Moment of Inertia o [mm™4]
Diaphragm Height : [mm]
Diaphragm Yield Stress : [MPq]
Diaphragm Modulus of Elasticity . [MPq]
Diaphragm Delta 0 [mm]
Stiffener Width : [mm]
Stiffener Thickness 0 [mm]

BRACKET DIMENSION

Walkway Width ( Bracket Dim. B)  :760 [mm]
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Bracket Spacing 900 [mm]

Bracket Weight :22.6 [kdg]
Bracket Dimension A :1920 [mm]
Bracket Dimension C 900 [mm]
Bracket Dimension D :29.7 [Degree]
Bracket Dimension F 130 [mm]
Bracket Dimension G 915 [mm]
LOAD DATA
LL Walkway 2.4 [KPa|
LL Sab 2.4 [KPq]
DL Formwork :0.244 [KPa]
DL Concrete :5.413 [KPaq]
Top flange stress/positive moment :0 [MP4
Bottom flange stress/positive moment  :0 [MPq]
Top flange stress/negative moment :0 [MP4]
Bottom flange stress/negative moment  :0 [MP4]
Maximum Whed Load :3.75 [KN]
Whed Spacing[1 - 2 - 3] :600 - 1200 - 600 [mm]

ADVANCED LOAD OPTIONS
Use advanced load options? - YES
Stresses given for the positive moment region at centers between diaphragms
Stresses given for the negative moment region are at a diaphragm

CONNECTION DETAILS

Bolted Connection :NO
Number of Bolts [ ]
Distance Top of Diaphr. to 1st Bolt  : [mm]

Bolt Spacing : [mm]
Bolt Diameter : [in]
Bolt Materid : A325
Bolt Hole Size : Standard
Sip Category : ClassA

TEMPORARY SUPPORT INFORMATION

Number of Tie Rods : NONE

Number of Timbers :NONE
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HHTHHHTTTTTTTTIOUTRUTDATA T
STRESS OUTPUT
POSITIVE MOMENT REGION

Top Flange Stresses due to non-comp DL : 0.00 [MP4]
Top Flange Stresses due to torsion .- 48.07 [MP4]
Top Flange Stresses total Sum :-48.07 [MPq]
Bottom Flange Stresses due to non-comp DL : 0.00 [MP4]
Bottom Flange Stresses due to torsion : 16.90 [MPa
Bottom Flange Stresses total Sum : 16.90 [MP4]

NEGATIVE MOMENT REGION

Top Flange Stresses due to non-comp DL : 0.00 [MP4]
Top Flange Stresses due to torsion : 64.91 [MPaq]
Top Flange Stresses total Sum : 64.91 [MP4]
Bottom Flange Stresses due to non-comp DL : 0.00 [MP4]
Bottom Flange Stresses due to torsion :-22.82 [MP4]
Bottom Flange Stresses total Sum 1 -22.82 [MPq]
Compare to yield at : 250.00 [MPq]

ULTIMATE STRESS CHECK
Check for ultimate strength using eg. (10-155) AASHTO. 0.09< 1!

DEFORMATION OUTPUT

Lateral Top Flange Deflection (VT) : 4.533 [mm]
Lateral Bottom Flange Deflection (VB) 1,195 [mm]
Vertical Deflection of the Rail (UR) :4.15 [mm]
Rotation of the Girder (Theta) : 0.25 [Degree]

DIAPHRAGM OUTPUT

Lateral Support Reaction at the Top Flange (Ft) :44.05 [KN]
Lateral Support Reaction at the Bottom Flange (Ft) : 44.05 [kN]
Resulting Moment acting on the Diaphragm : 58.69 [kNm]
Max. Stress in the Diaphr. due Torsional Load (M) : [MPa
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Max. Bolt Load due Torsional Load (M) : [kN]
Critical Bolt Load acc. to AASHTO Table 10.32.3 C : [KN]
Slip of Bolts :

BRACKET FORCES OUTPUT

Hanger Force :40.96 [kN]
Horizontal Force (Top) : 27.70 [KN]
Horizontal Force (Bottom) : 27.70 [KN]
Vertical Force : 28.96 [kN]
Diagonal Force : 31.89 [kN]
LL Walkway :2.16 [KN/m]
DL Form Work :0.22 [KN/m]
LL Sab :2.16 [KN/m]
LL Concrete :4.87 [KN/m]
Whesd load : 20.35 [KN/m]
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Appendix F — Example 2 Data Summary
TEAG - Torsional Analysis for Girders Version 1.0 - Summary Report for
EXAMPLE2.prj
N = S sy N
PROJECT AND FILE INFORMATION

Input file name ‘EXAMPLE2.prj

Location :C:\teag\EXAMPLEZ2.prj

KDOT Project # :SWARTZ ROAD EXTENSION
Engineer :MARK KRIESTEN

Project Title ‘EXAMPLE 2

Last Modified :6/24/99 8:34:59 PM

Created :6/24/99 8:33:23 PM

System of Units :U.S. Customary

Notes )

GIRDER DIMENSIONS AND MATERIAL PROPERTIES

Top Flange (Width X Thickness) 16 X 1.25 [in]
Bottom FHange (Width X Thickness) :16 X 1.25 [in.]

Web (Width X Height) :32 X 0.312 [in/]
Yied Stress :36 [kd]
Modulus of Elasticity :29000 [ks]

BRIDGE AND LATERAL SUPPORT DATA

Distance between lateral Supports :218 [in.]

Bridge Skew :42.4 [Degrees|
Bridge Width :312 [in]
Diaphragms 'YES
Diaphragm Moment of Inertia 1243 [inM]
Diaphragm Height 18 [in.]
Diaphragm Yield Stress :36 [kd]
Diaphragm Modulus of Elasticity :29000 [kd]
Diaphragm Delta :8 [in/]
Stiffener Width :4.344 [in]
Stiffener Thickness :0.375 [in]

BRACKET DIMENSION
Walkway Width ( Bracket Dim. B) 24 [in/]

Bracket Spacing 48 [in]
Bracket Weight :50 [Ib]
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Bracket Dimension A :76.5[in.]

Bracket Dimension C :52.5 [in.]
Bracket Dimension D :21.413 [Degree]
Bracket Dimension F :0 [in]
Bracket Dimension G :30 [in.]
LOAD DATA
LL Walkway :10 [psf]
LL Sab 10 [psf]
DL Formwork :13.4 [psf]
DL Concrete :106.25 [psf]
Top flange stress/positive moment :0 [pd]
Bottom flange stress/positive moment ;0 [pS]
Top flange stress/negative moment :0 [ps]
Bottom flange stress/negative moment 0 [pgi]
Maximum Whed Load :1.337 [Kips]|
Whed Spacing[1 - 2 - 3] :21-64-18 [in/]

ADVANCED LOAD OPTIONS
Use advanced load options? - YES
Stresses given for the positive moment region at centers between diaphragms
Stresses given for the negative moment region are at a diaphragm

CONNECTION DETAILS

Bolted Connection :NO
Number of Bolts [ ]
Distance Top of Diaphr. to 1st Bolt  : [in.]

Bolt Spacing : [in]

Bolt Diameter : [in]
Bolt Materid : A325
Bolt Hole Size : Standard
Sip Category : ClassA

TEMPORARY SUPPORT INFORMATION

Number of Tie Rods : NONE
Number of Timbers ‘ONE
Distance between Diaphragms and the tierod :109 - 109[in.]
Cross sectional Area of the Timbers 16 [inA2]
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STRESS OUTPUT

POSITIVE MOMENT REGION

Top Flange Stresses due to non-comp DL
Top Flange Stresses due to torsion
Top Flange Stresses total Sum

Bottom Flange Stresses due to non-comp DL
Bottom Flange Stresses due to torsion
Bottom Flange Stresses total Sum

NEGATIVE MOMENT REGION

Top Flange Stresses due to non-comp DL
Top Flange Stresses due to torsion
Top Flange Stresses total Sum

Bottom Flange Stresses due to non-comp DL
Bottom Flange Stresses due to torsion
Bottom Flange Stresses total Sum

Comparetoyield at

ULTIMATE STRESS CHECK

© 0.00 [psi]

.- 5816.83 [psi]
- 5816.83 [psi]

© 0.00 [psi]

© 893.11 [psi]
© 893.11 [psi]

© 0.00 [psi]

© 6233.12 [psi]
© 6233.12 [ps]

© 0.00 [psi]

.- 3015.43 [psi]
- 3015.43 [psi]

: 36000.56 [psi]

Check for ultimate strength using eg. (10-155) AASHTO. 0.07< 1!

DEFORMATION OUTPUT

Lateral Top Flange Deflection (VT)
Lateral Bottom Flange Deflection (VB)
Vertical Deflection of the Rail (UR)
Rotation of the Girder (Theta)

DIAPHRAGM OUTPUT

Lateral Support Reaction at the Top Flange (Ft)

:0.092 [in]
:0.043 [in]
:0.21 [in]
:0.23 [Degree]

:16.84 [Kips]

Lateral Support Reaction at the Bottom Flange (Ft) : 12.24 [Kips]|

Resulting Moment acting on the Diaphragm
Max. Stress in the Diaphr. due Torsional Load (M)

£ 40.28 [Kip-ft]
[psi]



Max. Bolt Load due Torsional Load (M) . [Kips
Critical Bolt Load acc. to AASHTO Table 10.32.3C : [Kips|
Slip of Bolts :

BRACKET FORCES OUTPUT

Hanger Force :10.01 [Kips|
Horizontal Force (Top) :10.44 [Kkips]
Horizontal Force (Bottom) :10.44 [Kkips]
Vertical Force . 7.08 [kipg|
Diagona Force :11.21 [Kips|
LL Walkway :0.04 [Kipg/ft]
DL Form Work :0.05 [Kipg/ft]
LL Sab :0.04 [Kipg/ft]
LL Concrete :0.42 [Kipg/ft]
Whesd load :1.39 [Kipg/ft]
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Appendix G — Example 3 Data Summary

TEAG - Torsional Analysis for Girders Version 1.0 - Summary Report for
EXAMPLE3.prj

TN RUTDATA AT |

PROJECT AND FILE INFORMATION

Input file name ‘EXAMPLES3.prj

Location :C:\teag\EXAMPLES.prj
KDOT Project # :K-10 BRIDGE

Engineer :MARK KRIESTEN

Project Title :EXAMPLE 3, K-10 BRIDGE
Last Modified :6/24/99 9:50:37 PM

Created :6/24/99 8:36:43 PM

System of Units :U.S. Customary

Notes :

GIRDER DIMENSIONS AND MATERIAL PROPERTIES

Top Flange (Width X Thickness) 12 X 1 [in/]
Bottom Fange (Width X Thickness) :16 X 1.375 [in.]

Web (Width X Height) :54 X 0.4375 [in]
Yidd Stress :50 [ks]
Modulus of Elasticity :29000 [ks]

BRIDGE AND LATERAL SUPPORT DATA

Distance between lateral Supports :288 [in.]

Bridge Skew :0 [Degrees|
Bridge Width 1108 [in.]
Diaphragms ‘NO
Diaphragm Moment of Inertia :5345 [in/4]
Diaphragm Height 5 [in]
Diaphragm Yield Stress 5 [kd]
Diaphragm Modulus of Elasticity 5 [kd]
Diaphragm Delta 5 [in/]
Stiffener Width 5 [in]
Stiffener Thickness :50 [in.]

BRACKET DIMENSION
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Walkway Width ( Bracket Dim. B) 24 [in/]

Bracket Spacing 48 [in]
Bracket Weight :50 [Ib]
Bracket Dimension A 64 [in.]
Bracket Dimension C 40 [in.]
Bracket Dimension D :25.1148 [Degree]
Bracket Dimension F 0 [in]
Bracket Dimension G :30 [in]
LOAD DATA
LL Walkway 10 [psf]
LL Sab 10 [psf]
DL Formwork 13 [psf]
DL Concrete :87.5 [psf]
Top flange stress/positive moment :0 [ps]
Bottom flange stress/positive moment ;0 [pS]
Top flange stress/negative moment :0 [pd]
Bottom flange stress/negative moment 0 [pgi]
Maximum Whed Load :3.05 [kipg|
Whed Spacing[1 - 2 - 3] 24 - 48 - 24 [in/]

ADVANCED LOAD OPTIONS
Use advanced load options? - YES
Stresses given for the positive moment region at centers between diaphragms
Stresses given for the negative moment region are at a diaphragm

CONNECTION DETAILS

Bolted Connection :NO
Number of Bolts [ ]
Distance Top of Diaphr. to 1st Bolt  : [in.]

Bolt Spacing : [in]

Bolt Diameter : [in]
Bolt Materid : A325
Bolt Hole Size : Standard
Sip Category : ClassA

TEMPORARY SUPPORT INFORMATION

Number of Tie Rods TWO
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Distance between Diaphragms and the tierod :115 - 58 - 115[in.]

Cross sectional Area of the Tie Rods

Number of Timbers

0.2 [inA2]

TWO

Distance between Diaphragms and the tierod :115 - 58 - 115[in.]

Cross sectional Area of the Timbers 16 [inA2]
T OUTPUT DATA
T
STRESS OUTPUT
POSITIVE MOMENT REGION
Top Flange Stresses due to non-comp DL : 0.00 [pg]

Top Flange Stresses due to torsion
Top Flange Stresses total Sum

Bottom Flange Stresses due to non-comp DL

Bottom Flange Stresses due to torsion
Bottom Flange Stresses total Sum

NEGATIVE MOMENT REGION
Top Flange Stresses due to non-comp DL
Top Flange Stresses due to torsion
Top Flange Stresses total Sum
Bottom Flange Stresses due to non-comp DL
Bottom Flange Stresses due to torsion
Bottom Flange Stresses total Sum

Comparetoyield at

ULTIMATE STRESS CHECK

.- 2173.75 [psi]
.- 2173.75 [ps]

© 0.00 [psi]

: 715.85 [psi]
© 715.85 [ps]

© 0.00 [psi]

© 4883.08 [ps]
- 4883.08 [ps]

© 0.00 [psi]

.- 1850.70 [psi]
.- 1850.70 [psi]

© 50000.78 [psi]

Check for ultimate strength using eg. (10-155) AASHTO. 0.01< 1!

DEFORMATION OUTPUT
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Lateral Top Flange Deflection (VT) - 0.050 [in]

Lateral Bottom Flange Deflection (VB) :0.011 [in]
Vertical Deflection of the Rail (UR) :0.04 [in]
Rotation of the Girder (Theta) : 0.06 [Degree]

DIAPHRAGM OUTPUT

Lateral Support Reaction at the Top Flange (Ft) : 8.77 [Kips|
Lateral Support Reaction at the Bottom Flange (Ft) : 8.54 [Kips]|

Resulting Moment acting on the Diaphragm :39.80 [Kip-ft]
Max. Stressin the Diaphr. due Torsional Load (M) : [pg]
Max. Bolt Load due Torsional Load (M) . [Kips|

Critical Bolt Load acc. to AASHTO Table 10.32.3C : [Kips|
Slip of Bolts :

BRACKET FORCES OUTPUT

Hanger Force . 8.88 [kipg|
Horizontal Force (Top) 1 7.44 [kips|
Horizontal Force (Bottom) 1 7.44 [kips|
Vertical Force . 6.28 [kipg|
Diagonal Force . 8.21 [kipg

LL Walkway :0.04 [Kipg/ft]
DL Form Work :0.05 [Kipg/ft]
LL Sab :0.04 [Kipg/ft]
LL Concrete :0.35 [Kipg/ft]
Whesd load :1.39 [Kipg/ft]
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Appendix H —Analytical Example for High Stress Bolt Slip

Table 10.32.3C of the AASHTO Bridge Specifications, [AASHTO, 1996] is
used calculating the critical bolt load in the connection between girder and
diaphragms. The actual load of the bolt is calculated assuming that all bolts carry the
same load regardless of their distance to the center of the bolt pattern. Thisis because
the connection is considered dip critical and therefore an elastic theory can not be used
since this would require dip to occur. Details on this approach can be explored in
Salmon & Johnson [Salmon, Johnson , 1996].

Given six 3/4 in. bolts in one row connecting a diaphragm and girder, with a bolt

gpacing of 3.15in., and an applied moment of 40 k-ft, check for bolt dip.

e —
e
3.15
R _ O
5 3*3.15
« O Y
5+3.15
<« © —
<« © M

From AASHTO Table 10.32.3.C, for class A, ASTM A325, oversized or slotted
holes, the dip stressis Fs=13 ks

Because for f =3/4, the sectional areas A = 0.4418 in ?, thus the bolt capacity is
Ps=Fs* Ab=13ks*0.4418in"=5.7434 k

On the other hand, the external stressfor all boltsis
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R =40 k-ft*12/(3.15+3.15*3 +3.15*5)
R = 16.9312k >> 5.7434k

So, dlip will occur.
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Figures

Fr |:|_'i ect Inmformation

Figure 4.1 Project Data Form
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Ll Girder Data

—Top Flange Dimensions

Wiclth: I [rmim] Thickness: I [rmm]
—wiieh Dimensions
Height; I [rmim] Thickness: I [mm]
—Bottom Flange Dimenzions
iWicith; l [mim] Thickness: I [rmitm]
—oteel Grade
Yield stres=: l [MP=] Moculus, E: IEIIIIIIIIIIIIIII [hPa]

Lse this

form to enter

girder
dimensions

and grade of

steel

F1 far Help

Prirt Form

Cancel

(03 .8

T
e

|

Figure 4.2 a Girder Data Form

Yidld stress,
Elastic
modulus

Section of the exterior girder.

Top flange of the exterior
girder. Width X Thickness

Web of the exterior girder.

Height X Thickness

Bottom flange of the exterior
girder. Width X Thickness

Figure 4.2 b Girder Properties
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/L lBridge and Lateral Suppoert Data

—zeneral Bridge Dimensions

Dizt. hetvween I— ] Lse this
lsteral supports: form to enter
. general
Distance between I— rmmj hridge
the tweo et girder: e
and
- Lateral Support infarrmation
" Cross Frames Choose the permanent on lateral
lsteral bracing system support

Diaphragrn 1 I [mm™4]Stiffensar Width: l [mim] F1 for Help
Height, k: I [mm] Stiffener Thickness: I [mm]
Yield stress, Fu: I [hPa]

koduluz, E: 200000 [hiPa]

Top Offzet: I [mim]

Prirt Form

i

Cancel

CLk. I
Figure 4.3 a Bridge Data Form
~ Distance between the two ext.
h - X-frames or
diaphragms
Exterior
girder

Distance
between latera
supports

Bridge skew

1. Plan of atypical bridge

Figure 4.3.b Bridge Measures
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t Top offset

A
Height of
I, Fy, E diaphragm
v
Exterior
Girder

Section of the exterior girder w/ view on atypical diaphragm

JLBracket Dlata

Figure 4.3.c Diaphragm Details

Wialksay wicith (B I

[mm] Distance of walkbway.

Bracket zpacing: I

[mm] Distance c-c of brackets along the
gircler.

Bracket weight; I

[kg] U=e manufacturers information for
bracket weeight.

Bracket dimension A I

[mm] Distance from certerling of girder
to end of bracket.

Bracket dimension C: I

[mm] Distance from centerling girder 1o
=reed rail.

Bracket dimension Ot I

[Degreangls hetween zlab and strut.

Bracket dimension F: I

[mm] victh of zafe forms along the
sealkneay

Bracket dimension G: I

[mm] ‘Vertical distance from the strut
point to top of girder.

Lize this

form to enter

bracket
dimernsions
and weight

F1 for Help

Print Farm

Cancel

(8],3

L

Figure 4.4 a Bracket Data Form
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F B E C i

i L

B WheslLosd

DL, Comaele

L L ¥alkeay T T :

| T | | [ L.L Slah !

LTEATETRTEIrA A §

S e W e s Wk

d .\ A f‘l\
f
D
Bracket dimensions and loads :

Figure 4.4 b Bracket Dimensions
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Figure 4.5 aLoad Data Form

E i Advanced Load Options

Figure 4.5.b Advanced Load Options
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1.dist. 2.dist 3.dist Max. V\_/h_eel_load
of thefinishing

“—>e <> machine

l l l ‘ Digphragm

% |: Exterior girder %

<4— Distance between — >
diaphragms

Finishing machine loads on the exterior

Figure 4.5.c Whed Loads
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== Connection Girder - Diaphragm D ata E= BT I

—Connection Details :
~ ; ; Use this
Wiglded connection Choose the connection type farm ta
only enabled it diaphragms are uzed! Enter
details on
Mumber of bofs; I [1] Bott diameter: |12 [in] the _
a1 connection
34 hetween
75 | ;
Top to first bolt: I i L= irder and
i o 1 giaphragm
1148
1154
Bl spacing: I [mm] 1315
11452
Helgp |
—Bolt Material Bolt Hole Size
Dverzize and Print Form
¥ £325 8480 { ¥ Standard et |
— Slip Category based on AASHTO Lancel |
* Class & { ClassB { " Class C o |

Figure 4.6 a Connection Data Form

® w{ Top tofirst bolt

A
® Y Diaphragm

Bolt spacing
® i
A
028 Y
~—
Shear tab

Figure 4.6 b Connection Details
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[iTemporary Support Data

—Tie Rods

" one

# of tie-rads: | none

" bwvo " three

Spacing between I I
lateral suppaorts;

Crozs-sectional area:l [rirn™2]

I [rrirni]

Erter the spacing between
diaphragms § crozzframes and
temporary steel tie-rods.

— Timber Blocking

# of timker Blks: & none " one

T bwvo i three

Spacing bebween I I
Lateral Supports;

Crozs-sectional area:l [mm*2]

| I [

Enter the spacing between
diaphragms § crozsframes and
temporary wood timker blocking

Figure 4.7 a Temporary Support Form

Ise thig
form to enter
number and
lacation of
temparary
supports

F1 far Help

Prirt Form

Cancel

EEET
[

Primary
girders

<+« pt———  p4t———— pt——————p
Four distances between the tie-rods / timbers and

the diaphragms for three tie-rods / timbers

_diaphragm

Figure 4.7 b Temporary Blocking Plan View
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—~——_ Torsion
D — G
+ -
DL
DL
_ +
G D L\
/I /I
L — L— Torsion
- + - +
Negative Moment Region Positive Moment Region

Figure 4.8 a Stress Results Form
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Caleulated Stresses

Figure 4.8 b Stress Distribution due to torsion and noncomposite DL
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im Ultimate Strength Check

Figure 4.9 Ultimate Stress Check Form

i, Calculated Deflections

Figure 4.10 Deflection Results Form
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| LBracket Forcesz and Loads per Bracket

—Bracket Forces Internal

Hancer FD%, ! [KR] Fotces of
the

“ertical Force: Har. Force Brackets
I— | under the
0] AT
Ciagonsl strut) Force: il loads given
l E— Vg_\ Hor, Force: bl ow
e F1 far Hel
) = P

— Loadz per unit Bracket "Width:

LL Walksneayy: | [KPdim] DL Concrete:; | [kPdirm]

DL Form YWork: I [kiim) wiheel Load: l (] Cancel i
LL Slak: I [kM#m] (8]0} i

Figure 4.11 Bracket Forces Result Form

ILiCaleulated Diaphragm Response

— Diaphragm Response

Lateral support reaction of the top I_ kA
flange (Ft):
Ft

kM) e

— Girder-Disphragm Connection -

Lateral support reaction of the
bottom flange (Fh:

Resulting moment acting on the l—
diaphragm (M) ind
Maxitmum stress in the disphragm I‘— (MR
due to tarsional load (M) Stress dus to M
Max. load of one bolt due to !— [kl F1 for Help
torsional losd (M)

Critical bolt load acc. ta AASHTO. l_ kM) Fh
Tahle 10.32.3 C:
Prirt Farm i
Slip of the bolts due to (M) I

L]

Figure 4.12 Diaphragm Results Form
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10 kN each

System 1
PR R T
é 3.8 06 12 0.6 3.8 §
7 < PPt PP« N m
10.0
<
-20
+20 +10
| — Q [kN]
| -10
M [KNm]
+82
~—
System 2 16,66 kN/m
Z N
Z N
Z A\
-20
+20
Q[kN]
M [KNm]

\/

+88

Figure 4.13 Load Type Comparison

100




No-Stiffener Model

Figure A.1 3-D ANSY S©Models
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Z
7 Z
Z a L Z
5
= 7320 mm 7320 mm 7320 mm

| |

| L = 21960 mm |

q = 0.0002 kN/mn?

Ei

Top Hange 415 x 35 mm

Section

Web 13 mm

_ 2
q = 0.0002 kN/mm Bottom Flange 415 x 35 mm

45 |

Figure A.2 System for ANSY S ©Analysis and Section Locations
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I T |

No-Stiffener

| - P
=

Stiffener Model

Figure A.3 Boundary Conditions a Third Points
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12.00 +

(2]
,§ 2007 _~ | Stiffener
— O] /| A
£ B — 2
z 0 B
X 3 £
2 = S
5 B %)
£ = -8.00 | 5
28 2
32 =
o
L35
£
g
5 -18.00 |
-28.00 |
Location along the X-axis [L]
-38.00 f
0 L/6 L/3 L/2
——113 -30.00 14.22 -28.83 15.67
—— 133 -31.12 14.17 -28.65 16.28
—%— 153 -32.37 14.00 -28.08 16.93
—x—173 -33.83 13.57 -27.29 17.67
—%— 193 -35.52 13.35 -26.32 18.53
—=—213 -37.49 12.90 -25.23 19.52
—o— wlo Stiffener 113 -28.15 14.66 -27.83 14.77
Maximum Difference [%)] 33.2 12.0 9.4 32.2

Figure A.4 Bottom Flange Moments due to Distributed Load-Couple g
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Figure A.5 Top Flange Moments due to Distributed Load-Couple q
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Figure B.10 Influence Line for Moment Mb due to Concentrated Couple P
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Figure B.11 Influence Line for Moment M2 due to Concentrated Couple P
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Figure B.13 Influence Line for Deflection W2 due to Concentrated Couple P
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Tables

KDOT Design Manua TAEG
(divided by 1.3)
Stresses In The Positive Moment Region
Top Flange -46.42 -48.07 [MPa]
(-35.71)
Bottom Flange 16.32 16.90 [MPa
(12.55)
Stresses In The Negative Moment Region
Top Flange 87.10 64.91 [MPa
(67.0)
Bottom Flange -30.10 -22.82 [MPa]
(-23.15)
Girder Deflection and Rotation
Lateral Top Flange Deflection 9.00 4533 [mm]
Rotation of the Girder 0.17~0.46 0.25 degrees

Table 1. Results Comparison for Example 1

Measured | TAEG w/o timber| TAEG with timber
[psi] [psi] [psi]
Negative |top 640.00 6233.12 6233.12
Moment bottom 563.38 5899.74 3015.43
Positive top 642.25 5816.83 5816.83
Moment bottom 72.112 5989.95 893.11

Table 2. Results Comparison for Example 2
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KDOT manual TAEG w/o TAEG with
W/o timber timber timber
(divided by 1.3) [psi] [psi]
[psi]
Negative |top 13266.29 4883.08
Moment bottom 5427.12 1850.70
Positive top 19400 15786.95 2173.75
(14923)

Moment bottom 6458.30 715.85

Table 3. Results Comparison for Example 3
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